DTS-6

JEE Advanced Archive

76.(C)
$$R_2CuLi + 2R'X \longrightarrow 2R - R' + CuX + LiX$$

77.(B)
$$R - CH = CH_2 \xrightarrow{H^{\oplus}} R - CH - CH_3 \xrightarrow{H_2O} R - CH - CH_3$$
 (secondary alcohol)

$$\begin{array}{c} R \\ C = CH_2 \end{array} \xrightarrow{H^{\oplus}} \begin{array}{c} R \\ C - CH_3 \end{array} \xrightarrow{H_2 \ddot{O}} \begin{array}{c} R \\ C - CH_3 \end{array}$$
 (tertiary alcohol)

78.(B)
$$H_3C$$
 CH_3 CH_2 CH_3 CH_2CI CH_3 CH_2CI CH_3

Since, fractional distillation cannot separate enantiomers (II + III and V + VI), M = 4 and N = 6.

79.(A) NOCl undergoes electrophilic addition on alkene as:

$$NOCl \longrightarrow {}^{+}N = O + Cl^{-}$$

$$\mathbf{CH_3} - \mathbf{CH} = \mathbf{CH_2} + {}^{+}\mathbf{NO} \longrightarrow \mathbf{CH_3} - \overset{+}{\mathbf{CH}} - \mathbf{CH_2} \xrightarrow{\qquad \mathbf{Cl}^{-}} \mathbf{CH_3} - \mathbf{CH} - \mathbf{CH_2}$$

80.(D) Electrophilic addition reaction more favourable.

$$H_2C = CH - OCH_3 \xrightarrow{HBr} H_3C - \overset{\oplus}{CH} - OCH_3 \xrightarrow{Br^-} H_3C - CH - OCH_3$$
(more stable)

81.(A) Br₂ undergo anti-addition on C = C bonds as:

82.(B) Br
$$\xrightarrow{\text{alc. KOH}}$$
 $CH_2 = CHBr \xrightarrow{\text{NaNH}_2}$ $H - C \equiv C - H$

Vidyamandir Classes

84.(C) Due to o- and p-directing nature of CH₃ group.

$$CH_3$$
 CI_2
 CI_3
 CI_4
 CI_3
 CI_4

- **85.(D)** $-NO_2$ group shows -M effect, so withdraws the electron density from the ring and hence deactivate the ring towards electrophilic aromatic substitution.
- 86.(C) Any aliphatic carbon with hydrogen attached to it, in combination with benzene ring, will be oxidized to benzoic acid by $KMnO_4/H^+$.

87.(D)
$$CH_3 - CH = CH - CH_3 \xrightarrow{O_3} CH_3 - CH \xrightarrow{CH} CH - CH_3 \xrightarrow{Zn} 2CH_3CHO$$

- **88.(B)** $-\text{NO}_2$ is electron with drawing which will destabilize σ -complex.
- **89.(D)** $CH_3 MgX + CH_3 C \equiv C H \longrightarrow CH_4 + CH_3C \equiv C MgX$
- 90.(D) $CH_3CH_2C \equiv C^- + Br CH_2CH_2CH_2CH_3 \rightarrow CH_3CH_2 C \equiv C CH_2CH_2CH_2CH_3$ 3-octyne